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A Dicke Type Model for Equilibrium BEC
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We study the effect of electromagnetic radiation on the condensate of a Bose
gas. In an earlier paper we considered the problem for two simple models
showing the cooperative effect between Bose–Einstein condensation and sup-
erradiance. In this paper we formalize the model suggested by Ketterle et al
in which the Bose condensate particles have a two level structure. We present
a soluble microscopic Dicke type model describing a thermodynamically sta-
ble system. We find the equilibrium states of the system and compute the ther-
modynamic functions giving explicit formulæ expressing the cooperative effect
between Bose–Einstein condensation and superradiance.

KEY WORDS: Bose–Einstein condensation; supperradiance.

(Dedicated to the memory of John T. Lewis whose friendship, inspiration and
support are greatly missed.)

1. INTRODUCTION

The present paper is motivated by the recent experiments exhibiting a special
coherent interaction between matter and light, which has been nicknamed
“four-wave mixing”(1). In these experiments boson atoms with an internal
structure, condensed in a trap, are irradiated with light produced by an external
laser beam. The structure of the atoms is usually represented by considering
them as having two levels(2,3). A system of two level-atoms interacting with
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light is very reminiscent of the Dicke model(4). Moreover an important feature
of this model, namely superradiance has been observed in these experiments,
where it is found that there is an enhancement of both Bose–Einstein Conden-
sation (BEC) and light radiation (superradiance) due to the interaction.

Recently various models(1–3) for this BEC-superradiance coupling
were constructed and discussed in order to describe both equilibrium
and non-equilibrium superradiance by condensed atoms. It is interesting
to note that as early as 1978 Girardeau(5) had already anticipated this
phenomenon in the context of superfluid helium and had discussed the
possible impact of the equilibrium superradiance on the thermodynamic
properties of the latter. In our recent letter(6) we have considered two sim-
ple systems by which we modelled the coherent behaviour of the BEC
atoms irradiated by a laser beam, showing rigorously that a weakened
form of the “four-wave mixing” interaction enhances the superradiance
and BEC as proposed by Ketterle et al.(1–3)

The aim of the present paper is to consider a model which takes
explicitly into account the internal structure of the boson atoms. In fact
we assume that our bosons have an internal two-level structure of the
type described by SU(2)-spin symmetry. Therefore the one-particle wave
functions are of the form ψ ⊗ s where ψ ∈L2(Rν) describing the spacial
localization and s ∈ C

2 describing the internal (spin) state. Only the con-
densate particles, i.e., the particles in the ground state are supposed to
interact with the external field, and therefore only the ground state boson
particles are given a different ground state energy parameterized by a sep-
aration level parameter ε. If ε is put equal to zero, it is as if we have
just two different types of boson particles. The interaction turns out to
be a second quantized version of the well known Dicke maser model.
In our model we suppose that the recoil of the particles is negligible.
The model is in fact a realization of the physical mechanism explained
in ref. 2. For our model we study the equilibrium states in the infinite
volume limit (thermodynamic limit) and compute the corresponding ther-
modynamic functions. We examine the presence of cooperation between
the BEC condensate and superradiance as a function of the separation
level parameter ε. The existence of this phenomenon confirms the results
obtained in ref. 6 for a simpler model. It can be seen explicitly from the
expressions for the occupation densities for the bosons and photons. Our
results predict that with conventional BEC one obtains the same phenom-
enon of BEC-superradiance cooperation as is observed for trap experi-
ments.

We note that experimentally one can observe the photon recoil effect
which, on light atoms, can be non-negligible(1). However in the present
paper we consider the case when the photon momentum is very small so
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that the recoil effect can still be neglected. In a later publication we shall
study another model in which the influence of recoil is included.

2. THE MODEL AND ITS EQUILIBRIUM STATES

We consider a system of two types of bosons of mass m enclosed in
a cubic box � in ν dimensions (�⊂ R

ν) with volume V , centered at the
origin.

As usual let �∗ = {2πk/V 1/ν |k ∈ Z
ν} be the dual space of � used to

formulate the model with periodic boundary conditions. For k ∈�∗, σ =
±, a∗

k,σ and ak,σ are the usual boson creation and annihilation operators
of the two types of bosons satisfying the commutation relations:

[ak,σ , a∗
k′,σ ′ ]= δk,k′δσ,σ ′ . (2.1)

The kinetic energy of the system is given by

T�=
∑

σ=±

∑

k∈�∗, k �=0

ε(k)a∗
k,σ ak,σ + ε(a∗

0,+a0,+ −a∗
0,−a0,−) , (2.2)

where ε � 0 and ε(k)= ‖k‖2/2m. Note that the two k = 0 mode bosons
(the ground state for non-interacting bosons) have a supplementary inter-
nal energy, a spin-state energy, making the internal structure of the bosons
explicit. On the other hand the excited bosons k �=0 are not distinguished
by their internal energy, but it is straightforward to make them also dis-
tinguished. The reader will able to see that that our arguments cover also
the situation, when the single particle boson spectrum is presented by two
branches: εσ (k) := ε(k)+σ ε for two internal states of bosons.

We represent the external one mode laser field by a single mode
boson field with creation and annihilation operators b, b∗ satisfying
[b, b∗] = 1. As we indicated in the introduction here we consider the case,
when the photon momentum is very small so that the recoil effect is neg-
ligible. In this approximation we can take k=0 and then

b= 1√
V

∫

�

dx b(x) , (2.3)

where b(x), x ∈R
ν stands for the local (annihilation) photon field. As sug-

gested in the introduction we define our model Hamiltonian as

H�=T�+U� (2.4)
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where

U�= g

2
√
V
(a∗

0+a0−b+a0+a∗
0−b

∗)+	b∗b+ λ

2V
N2
� (2.5)

and

N�=
∑

k∈�∗
Nk , Nk = (Nk,+ +Nk,−) , Nk,σ =a∗

k,σ ak,σ

are respectively total boson number operator, the k-boson number opera-
tor and the boson number operator for momentum k and type σ .

Furthermore 	> 0 is the laser frequency and g is the coupling con-
stant of the interaction between the bosons and the external field. Note
that without loss of generality we can take g to be positive as we can
always incorporate the argument of g into b by a gauge transformation.

Notice in (2.5) the presence of the mean-field repulsive particle inter-
action with a positive coupling constant λ > 0. This term is essential in
order to obtain a model describing a thermodynamically stable system,
i.e. ensuring the right thermodynamic behaviour. Indeed one can check by
considering the interaction U� in (2.5), that

U� = 	(b∗ + g

2	
√
V
a0+a∗

0−)(b+ g

2	
√
V
a∗

0+a0−)− g2

4	V
N0−(N0+ +1)+ λ

2V
N2
�

� λ

2V
N2
�− g2

4	V
N0−(N0+ +1). (2.6)

On the basis of the trivial inequality 4ab� (a+ b)2, the lower bound
of (2.6) is bounded from below, if λ > g2/8	, that is if the stabilizing
repulsive interaction coupling constant λ is large with respect to the cou-
pling constant g or if the laser frequency 	 is large enough. Therefore we
assume that λ>g2/8	 is satisfied for the model (2.4). The reader will see
all along in the explicit analysis of the model below, the importance of
this stabilizing condition. We note that, so far, neither the coherent recoil
model, nor the “four-wave mixing” model nor Girardeau’s model are ther-
modynamically stable, although Girardeau in ref. 5 has stressed the impor-
tance of this stabilization. The models in ref. 6 are stable because of the
linearity of the interaction.

In the present paper we study the equilibrium states of the model
(2.4) in the grand-canonical ensemble and therefore we shall work with the
Hamiltonian

H�(µ)=H�−µN� (2.7)
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where µ is the chemical potential. Specifically our objective is to identify
the infinite volume equilibrium states corresponding to the Hamiltonian
(2.7) for a system of three different types of bosons. One way of achieving
this goal is through the basic variational principle of statistical mechanics.
Before starting to do this we prefer to reformulate the model with the pur-
pose of showing that our model (2.4) is nothing but a second quantized
bosonic form of the Dicke model and hence it realizes the ideas proposed
in refs. 2 and 3.

We have a system of atoms with internal states σ =±. Dicke regarded
the two-level atom as a spin-1/2 system. This is what we shall also do
and therefore we start from a two-dimensional representation of the Pauli
matrices generating the Lie algebra of SU(2), given by

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σ 3 =

(
1 0
0 −1

)
(2.8)

and the basis vectors {e+ = (1,0), e− = (0,1)} of C
2 diagonalizing σ 3.

The one-particle space of bosons is H=L2(Rν)⊗C
2. Let f ⊗ s be an

element of H, then a∗(f ⊗ s) is the creation operator of a boson particle
with state vector f ⊗ s. One can make the following identifications.

a∗
k,± =a∗(fk ⊗ e±) (2.9)

where for k∈�∗, fk is the plane wave function

fk(x)= 1√
V
eik·x, x ∈R

ν . (2.10)

In particular we have

a∗
0,± =a∗(f0 ⊗ e±). (2.11)

For any φ ∈ H, the creation and annihilation operators a∗(φ) and a(φ)

are linearly defined on arbitrary n-particle subspaces of Fock space
F(H):

a∗(φ)sym(φ1 ⊗φ2 ⊗ . . .⊗φn)= (n+1)
1
2 sym(φ⊗φ1 ⊗ . . .⊗φn) (2.12)
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and

a(φ)sym(φ1 ⊗φ2 ⊗ . . .⊗φn)=n− 1
2

n∑

r=1

〈φ,φr 〉H sym(φ1 ⊗ . . .⊗ φ̂r ⊗ . . .⊗φn),

(2.13)

where sym denotes symmetrization, 〈·, ·〉H is the scalar product in H, and
φ̂r means that φr is omitted.

Applying these definitions for a#
0,± on the n-particle k=0 mode states

and using the identity σ+s=〈e−, s〉C2 e+ we obtain

a∗
0+a0− sym((f0 ⊗ s1)⊗ (f0 ⊗ s2)⊗· · ·⊗ (f0 ⊗ sn))

=
n∑

r=1

σ+
r sym((f0 ⊗ s1)⊗ (f0 ⊗ s2)⊗ . . .⊗ (f0 ⊗ sn)) (2.14)

where

σ+
r (f0 ⊗ s1)⊗ (f0 ⊗ s2)⊗ . . .⊗ (f0 ⊗ sn)
= (f0 ⊗ s1)⊗ (f0 ⊗ s2)⊗ . . .⊗ (f0 ⊗σ+sr )⊗ . . .⊗ (f0 ⊗ sn).

(2.15)

The k= 0 mode kinetic energy term can be treated similarly. Hence,
on the n-particle k=0 mode states the sum of the k=0 kinetic-energy term
(2.2) and the interaction term with the laser field (2.5) takes the form

ε

n∑

i=1

σ 3
i + g

2
√
V

n∑

i=1

(σ+
i b+σ−

i b
∗) (2.16)

which coincides with the Dicke maser model. This proves that the model
(2.4) (or (2.7)) realizes the suggestions of ref. 3, namely that it is nothing
but a second quantized bosonized form of the Dicke maser model.

So far we have discussed the structure of our model. The rest of the
section is devoted to the technical preparation of the basic variational
principle of statistical mechanics applied to our model (2.7).

The variational principle states that if S is the set of the extremal
translation invariant states and f is the (grand-canonical) free energy den-
sity defined on S by

f (ω)= lim
V→∞

ω(H�(µ)/V )− (1/β)S(ω) (2.17)
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where S(ω) is the entropy density of the state ω, then a state ωβ ∈ S
satisfying

f (ωβ)= inf
ω∈S

f (ω) (2.18)

is an equilibrium state of (2.7) at inverse temperature β and µ.
The Hamiltonian (2.7) is not quadratic in the creation and anni-

hilation operators, and therefore cannot be diagonalised by a standard
symplectic or Bogoliubov transformation and thus, on this basis, one is
tempted to conclude at first sight that the model is not soluble. However
on closer inspection we find that we can write (2.5) in the form

U�

V
= g

2

{(
a∗

0+√
V

)(
a0−√
V

)(
b√
V

)
+
(
a0+√
V

)(
a∗

0−√
V

)(
b∗

√
V

)}

+	
(
b∗

√
V

)(
b√
V

)
+ λ

2

(
N�

V

)2

, (2.19)

so that all the terms are space averages. We have

a0±√
V

= 1
V

∫

�

dx a±(x),
a∗

0±√
V

= 1
V

∫

�

dx a∗
±(x) and

N�

V
=
∑

σ=±

1
V

∫

�

dx a∗
σ (x)a(x)σ

(2.20)

and by virtue of (2.3), b∗/
√
V and b/

√
V are clearly also space averages.

Without going into all the mathematical details, the reason why space
averages are such a simplifying feature is that they tend weakly to a multi-
ples of the identity operator(7). For example if ω is a space homogeneous
extremal (mixing) state then for all local observables, A and B one has

lim
V→∞

ω

(
A

1
V

∫

�

dx a∗
σ (x) aσ (x)

)
= ω (AB) lim

V→∞
ω

(
1
V

∫

�

dx a∗
σ (x) aσ (x)

)

= ω (AB)ω
(
a∗
σ (0) aσ (0)

)
, (2.21)

so that N�/V tends weakly to
∑
σ=±ω (a∗(0)σ aσ (0)). Similarly

lim
V→∞

a0±√
V

=ω(a±(0)), and lim
V→∞

b√
V

=ω(b(0)). (2.22)
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Thus if ω∈S, then the contribution of the term (2.5) to the energy density
in (2.17) yields

lim
V→∞

ω(U�)

V
= g

2

{
ω(a∗

+(0))ω(a−(0))ω(b(0))+ω(a+(0))ω(a∗
−(0))ω(b

∗(0))
}

+	 |ω(b(0))|2 + λ

2

(
∑

σ=±
ω
(
a∗
σ (0) aσ (0)

)
)2

, (2.23)

The result follows readily from (2.21) with A and B a multiple of the iden-
tity. We can therefore conclude that in the study of the equilibrium states
of (2.4) or (2.7), we can limit ourselves to searching for solutions ω which
are product states on the tensor product canonical commutation relations
algebra (CCR) of the three different kinds of particles, namely on

A :=A+ ⊗A− ⊗B, (2.24)

where A± is the C∗ algebra generated by the Weyl operators:

W±(f ) := exp
{
i
a∗±(f )+a±(f )√

2

}
,

for all f ∈L2(Rν)∩L1(Rν), and B by the Weyl operators:

Wb(f ) := exp
{
i
b∗(f )+b(f )√

2

}
.

The above discussion makes it clear that we find the equilibrium
states of our model among the states which are determined completely by
their one-point and two-point functions, that is, among the set of extremal
space invariant quasi-free states(7) on the respective CCR-algebras. This is
a consequence of the fact that if ω∈S, the set of states on A, and ω̃∈S is
a quasi-free state with the same one-point and two-point functions as ω,
then it follows by Klein’s inequality(8) that

S(ω̃)�S(ω). (2.25)

Therefore since our energy density involves only the one-point and two-
point functions, if SQF is the set of quasi-free state on A, then

inf
ω∈S

f (ω)� inf
ω∈SQF

f (ω) (2.26)
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and consequently

f (ωβ)= inf
ω∈SQF

f (ω). (2.27)

We denote the set of quasi-free states on Aσ by ωσ determined by the con-
stants ασ and the non-negative operators Aσ on L2(Rν) and satisfying

ωσ (Wσ (f ))= exp
(
i
√

2 Re (ασ 〈1, f 〉)− 1
4
‖f ‖2 − 1

2
〈f,Aσf 〉

)
(2.28)

for all f ∈L2(Rν)∩L1(Rν), see ref. 7.
Note that the states ωσ are completely determined by the one-point

function

ωσ (aσ (f ))= ᾱσ 〈f,1〉 (2.29)

and the two-point function

ωσ (a
∗
σ (f )aσ (g))=〈g, Aσf 〉+ |ασ |2〈1, f 〉〈g,1〉 (2.30)

for all f, g∈L2(Rν)∩L1(Rν).
On B we consider the extremal invariant state, which is determined by

one constant αb, see ref. 7.

ωb(Wb(f ))= exp
(
i
√

2 Re (αb〈1, f 〉)− 1
4
‖f ‖2

)
(2.31)

Its one- and two-point functions are

ωb(b(f ))= ᾱb 〈f,1〉 (2.32)

and

ωb(b
∗(f )b(g))=|αb|2 〈1, f 〉 〈g,1〉 . (2.33)

Note that this one-mode coherent state depends only on the k = 0
mode. It is possible also to consider a more general quasi-free states of the
form (2.31) to take into account other photons modes. However since only
the k=0 mode interacts with the bosons, this is unnecessary.
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Thus the candidates for the equilibrium states are among the set, SP ,
of products of quasi-free states, i.e. states of the form

ω=ω+ ⊗ω− ⊗ωb. (2.34)

They are completely parameterized by the set of parameters: α±, αb∈
C and the integral operators A± on L2(Rν):

(A±f )(x)=
∫

Rν
A±(x−y)f (y)d νy, x ∈R

ν (2.35)

If Â± is the Fourier transform of A±, then Â±(k)�0, expressing the pos-
itivity of the states ω±.

The variational principle (2.18) is now reduced to

f (ωβ)= inf
ω∈SP

f (ω). (2.36)

The entropy density for states in SP is explicitly given by, see(9):

S(ω)=S(ω+)+S(ω−), (2.37)

where S(ωb) = 0 because only one photon mode is taken into account.
Here

S(ω±)=
∫

Rν

{(
1+ Â±(k)

)
ln
(

1+ Â±(k)
)

− Â±(k) ln Â±(k)
} d νk

(2π)ν
. (2.38)

A straightforward computation yields:

lim
V→∞

ω(H�(µ)/V ) = −(µ− ε)|α+|2 − (µ+ ε)|α−|2

+
∫

Rν
(ε(k)−µ)

(
Â+(k)+ Â−(k)

) d νk

(2π)ν

+g
2
(ᾱ+α−ᾱb+α+ᾱ−αb)+	 |αb|2

+λ
2

{∫

Rν

(
Â+(k)+ Â−(k)

) d νk

(2π)ν
+|α+|2 +|α−|2

}2

.

(2.39)

Note that the pressure P(µ) of the system (2.7), as a function of the chem-
ical potential µ, is related to the grand-canonical free-energy density by

P(µ)=−f (ωβ)=− inf
S
f (ω). (2.40)
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3. VARIATIONAL SOLUTIONS

In this section we give a systematic derivation of the equilibrium
states for our model as well as explicit expression for the corresponding
grand-canonical pressure. To this end we solve the variational principal
(2.36), and we start by substituting (2.37–2.39) into (2.36) to obtain an
expression for the functional f (ω) in terms of the variational parameters
α±, αb ∈C and Â±(k):

We find that there are two critical chemical potentials µ(1)c (ε) and
µ
(2)
c (ε), µ

(1)
c (ε)�µ(2)c (ε), see Fig. 1.

For µ < µ(1)c (ε), the two σ = ± Bose gases behave like two mean
field Bose gases with no BEC and they do not interact with the external
b-boson laser field, in which there is no condensation either.

For µ>µ(2)c (ε), there is BEC for the two σ = ± Bose gases and for
the external boson laser field (superradiance).

When µ(1)c (ε)<µ
(2)
c (ε), for µ(1)c (ε)<µ<µ

(2)
c (ε) there is BEC only for

the σ =− Bose gas.
First we remark that we can take α±, αb real after a suitable gauge

transformation on the boson creation and annihilation operators a0± and
b, see (2.29) and (2.32). Note that the squares of these parameters are in
fact the condensate densities of the corresponding boson modes. For nota-
tional convenience we introduce the particle density for an arbitrary quasi-
free state ω of the form ω+ ⊗ω− ⊗ωb,

ρ :=
∫

Rν

(
Â+(k)+ Â−(k)

) d νk

(2π)ν
+|α+|2 +|α−|2 = lim

V→∞
ω (N�)

V
, (3.1)

that is, ρ is the density of σ = ± particles, excluding the b-particles. We
get the following Euler–Lagrange equations for the variational principle
(2.36):
Take

α+, α−, αb ∈R. (3.2)

(i) Differentiation of f (ω) with respect to α+ gives:

2 (λρ+ ε−µ)α+ +gα−αb=0, (3.3)

(ii) differentiation with respect to α−:

2 (λρ− ε−µ)α− +gα+αb=0, (3.4)
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(iii) differentiation with respect to αb,

2	αb+gα+α− =0. (3.5)

(iv) and finally differentiating with respect to Â+ and Â− yields:

Â+(k)= Â−(k)= 1
eβ(ε(k)−µ+λρ)−1

. (3.6)

Note that the last equation implies that λρ −µ� 0, since the Â±(k) are
positive. Moreover, the correlation inequality (see ref. 10)

ω
(
[A∗, [H�(µ),A]]

)
�0 (3.7)

for all observables A, applied here with A=a∗
0−, implies that λρ−µ�ε�

0. Substituting (3.6) into (3.1) we get

ρ=|α+|2 +|α−|2 +2ρ0(µ−λρ) (3.8)

where

ρ0(µ) :=
∫

Rν

1
eβ(ε(k)−µ)−1

d νk

(2π)ν
(3.9)

is the density of the free Bose gas at chemical potential µ. Recall that
ρ0(µ<0)<∞ and that ρ0(µ=0)<∞ for ν >2.

Solving (3.3), (3.4) and (3.5) we have to distinguish three cases:

Case 1: α+ =α− =αb=0.
Substituting zero for α+ and α− into (3.8) we get the standard equation
for the density of the mean-field interacting bosons

ρ=2ρ0(µ−λρ), (3.10)

see ref. 11. By virtue of the stability condition λρ−µ� ε� 0 we see that
this equation has no solution for µ>µ1(ε) := 2λρ0(−ε)− ε, while if µ�
µ1(ε) it has a unique solution ρ=ρ1(µ). (See Fig. 1, where x=λρ−µ so
that x � ε and (3.10) becomes µ= y := 2λρ0(−x)− x). Putting this value
of ρ into (3.6), we determine Â±. Substituting these and α+=α−=αb=0
in the expressions (2.31), (2.33) and (2.33), for ω± and ωb respectively, we
find a solution, ω(1)β,µ, of the Euler–Lagrange equations for the variational
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principle (2.36) for µ�µ1(ε). From (3.8) we are able to compute the free
energy density for the state ω(1)β,µ:

f (ω
(1)
β,µ)=−2p0(µ−λρ1(µ))− 1

2
λρ2

1 (µ) (3.11)

where p0(µ) is the pressure of the free Bose gas:

p0(µ) :=− 1
β

∫

Rν
ln
(

1− e−β(ε(k)−µ)
) d νk

(2π)ν
. (3.12)

Case 2: α+, α− and αb are non-zero.
We obtain from (3.3), (3.4) and (3.5) that

α+ = 2
√
	(λρ− ε−µ)

g
, α− = 2

√
	(λρ+ ε−µ)

g
, αb=−

2
√
(λρ−µ)2 − ε2

g
.

(3.13)
From these we see that in this case BEC is indeed present. Again substi-
tuting these values for α+, α− into (3.8) we get

ρ= 8	
g2
(λρ−µ)+2ρ0(µ−λρ). (3.14)

Note that the first term corresponds to the condensate density. Let η :=(
8	λ/g2 −1

)
. From the thermodynamic stability condition (Section 2) we

know that η>0. Then equation (3.14) has a unique solution ρ=ρ2(µ) for
µ> µ2(ε) := 2λρ0(−ε)+ ηε. Substituting this value of ρ into (3.13) and
(3.6) we obtain all the parameters α+, α−, αb and Â± and consequently
we get another solution, ω(2)β,µ, of the Euler–Lagrange equations.

The free energy density for the state ω(2)β,µ can again be computed:

f (ω
(2)
β,µ)=−2p0(µ−λρ2(µ))− 1

2
λρ2

2 (µ)+
4	
g2
(λρ2(µ)−µ)2 − 4	ε2

g2
.

(3.15)

Denote by x0 the unique solution of equation 2λρ′
0(−x)=η corresponding

to the minimum of the function 2λρ0(−x)+ηx, and let µ0 =2λρ0(−x0)+
ηx0. For µ0 <µ�µ2(ε) the equation (3.14) has two solutions ρ = ρ2(µ)

and ρ= ρ̃2(µ), ρ2(µ)>ρ̃2(µ). The corresponding states ω(2)β,µ and ω̃(2)β,µ can
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be found as above. The free energy density for the state ω(2)β,µ is as in (3.15)

and for ω̃(2)β,µ it is the same with ρ2(µ) replaced by ρ̃2(µ).

Case 3: α− �=0 and α+ =αb=0.
From (3.3), (3.4) and (3.5) one can see that this is possible only if

ρ= µ+ ε
λ

, (3.16)

corresponding to the boundary x = ε of the stability domain, see Fig. 1.
The equation (3.8) then requires that µ>µ1(ε) and gives

α+ =
√
µ+ ε
λ

−2ρ0(−ε). (3.17)

This case corresponds to yet another solution of the Euler–Lagrange equa-
tions, ω(3)β,µ, whose free energy density is given by:

f (ω
(3)
β,µ)=−2p0(−ε)− (µ+ ε)2

2λ
. (3.18)

We see from above that for certain values of µ there are several solu-
tions of the Euler–Lagrange equations. Since these equations determine
only the stationary points of the free energy functional, if there is more
than one such point, in order to obtain the equilibrium state for a fixed
µ we have to decide which of the solutions, has the lowest grand-canoni-
cal free-energy density.

To proceed with explicit analysis of solutions of the Euler–Lagrange
equations it is easier to work with the variable x=λρ−µ rather than ρ.
Also in the grand-canonical ensemble it is more usual to use the pressure
instead of the free energy density. These allow us to find the grand-canoni-
cal pressure as a function of its natural variable, the chemical potential. In
terms of x and η the equations (3.10), (3.14) and (3.16) become:

2λρ0(−x)−x=µ for µ�µ1(ε), (3.19)

2λρ0(−x)+ηx=µ for µ�µ0 (3.20)

and

x= ε for µ>µ1(ε). (3.21)
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We consider first the case ε=0. Then µ1(0)=µ2(0)=2λρc, where ρc :=
ρ0(0). So, in this case the lower critical dimensionality is the same as for
the free (or mean-field) Bose-gas: ν= 2. The equations (3.19), (3.20) and
(3.21) become :

2λρ0(−x)−x=µ for µ�2λρc, (3.22)

2λρ0(−x)+ηx=µ for µ�µ0 (3.23)

and

x=0 for µ>2λρc. (3.24)

In Fig. 1 we have drawn y= 2λρ0(−x)− x and y= 2λρ0(−x)+ ηx. Recall
that x0 is the unique solution of 2λρ′

0(−x)=η and µ0 = 2λρ0(−x0)+ηx0.
It is easy to see that:

1. For µ<µ0, (3.22) has a unique solution x1(µ) while (3.23) does
not have a solution.

2. In the region µ0 <µ< 2λρc, (3.22) has a unique solution x1(µ)

while (3.23) has two solutions x2(µ) and x̃2(µ), x2(µ)> x̃2(µ).

3. Finally for µ > 2λρc, (3.22) has no solution while (3.23) has a
unique solutions x2(µ) and we also have to consider the solution (3.24),
x=0.

Let

P1(x,µ)=2p0(−x)+ (x+µ)2
2λ

. (3.25)

and

P2(x,µ)=2p0(−x)+ {(x+µ)2 − (η+1)x2}
2λ

, (3.26)

Then the situation is as follows:

1. For µ<µ0, the solution of the variational problem (2.36) is ω(1)β,µ
and the corresponding pressure is P(µ) :=−f (ω(1)β,µ)=P1(x1(µ),µ).
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λρ

ε

ε

ρ η

Fig. 1. Solution of the density equation.

2. For µ0<µ< 2λρc, the solution of the variational problem is the
state out of ω(1)β,µ, ω(2)β,µ and ω̃

(2)
β,µ which minimizes the free energy density

or equivalently maximizes the pressure. The pressures for these states are
P1(x1(µ),µ), P2(x2(µ),µ) and P2(x̃2(µ),µ) respectively.

3. For µ> 2λρc, the two candidates for the solution of the varia-
tional problem (2.36) are ω(2)β,µ and ω(3)β,µ. The pressures for these states are

P2(x2(µ),µ) and P3(µ) :=−f (ω(3)β,µ)=2p0(0)+µ2/2λ.

In Fig. 2 we have sketched P1(x1(µ),µ), P2(x2(µ),µ), P2(x̃2(µ),µ)

and P3(µ0). One can check that P1(x1(µ),µ) and P2(x2(µ),µ) are convex
in µ. One also has

dP2(x2(µ),µ)

dµ
= x2(µ)+µ

λ
,

dP2(x̃2(µ),µ)

dµ
= x̃2(µ)+µ

λ
(3.27)

and

dP1(x1(µ),µ)

dµ
= x1(µ)+µ

λ
. (3.28)
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Fig. 2. The pressure.

Therefore since for µ0<µ<2λρc, x2(µ)>x̃2(µ)>x1(µ), in this interval we
have

dP2(x2(µ),µ)

dµ
>
dP2(x̃2(µ),µ)

dµ
>
dP1(x1(µ),µ)

dµ
. (3.29)

As P2(x2(µ0),µ0) = P2(x̃2(µ0),µ0), it follows from (3.29) that
P2(x2(µ),µ)>P2(x̃2(µ),µ) for µ0<µ<2λρc. Now

P1(x1(2λρc),2λρc)=P2(x̃2(2λρc),2λρc)=2p0(0)+2λρ2
c (3.30)

and consequently P2(x2(2λρc),2λρc) > P1(x1(2λρc),2λρc). Also if
P2(x̃2(µ0),µ0) were greater than P1(x1(µ0),µ0), then (3.29) would imply
that P2(x̃2(2λρc),2λρc)>P1(x1(2λρc),2λρc) contradicting (3.30). Thus we
must have

P2(x2(µ0),µ0)=P2(x̃2(µ0),µ0)<P1(x1(µ0),µ0). (3.31)

Therefore there exists a unique µc satisfying µ0 < µc < 2λρc such that
P2(x2(µc),µc)=P1(x1(µc),µc).
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Finally we consider µ > 2λρc. We have P3(2λρc) = P1(x2(2λρc),2λρc) <
P1(x2(2λρc),2λρc) and

dP3(µ)

dµ
= µ

λ
<
(x2(µ)+µ)

λ
= dP2(x2(µ),µ)

dµ
. (3.32)

Therefore P2(x2(µ),µ)>P3(µ) for µ>2λρc.
Summarizing: There exists a unique critical chemical potential µc

such that

1. For µ<µc, the solution of the variational problem (2.36) is ω(1)β,µ.

For ω(1)β,µ, α+ =α− =αb=0, i.e. the two ± Bose gases behave like two mean
field Bose gases with no BEC and do not interact with the external b-bo-
sons which do not condense either. The corresponding pressure is P(µ)=
P1(x1(µ),µ).

2. For µ>µc, the solution of the variational problem is ω(2)β,µ. For
this state

α+ =α− = 2
√
	x2(µ)

g
and αb=−2x2(µ)

g
, (3.33)

i.e. there is BEC for the two ± Bose gases and for the external bosons
laser field (superradiance). Moreover the condensation of the ± bosons
is enhanced by the presence of the laser field (b-bosons), known as the
equilibrium BEC superradiance (6). The pressure for the system is P(µ)=
P2(x2(µ),µ).

We now return to the case ε > 0. We have to redefine P2 and P3 but
P1 remains unchanged:

P2(x,µ)=2p0(−x)+ {(x+µ)2 − (η+1)x2}
2λ

+ (η+1)ε2

2λ
(3.34)

and

P3(µ)=2p0(−ε)+ (µ+ ε)2
2λ

. (3.35)

Note that

P1(x1(µ1(ε)),µ1(ε))=P3(µ1(ε)) (3.36)
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and

P2(x̃2(µ2(ε)),µ2(ε)) = P3(µ2(ε)) for ε<x0

P2(x2(µ2(ε)),µ2(ε)) = P3(µ2(ε)) for ε>x0. (3.37)

Also by again considering the derivatives

P2(x2(µ),µ)>P3(µ) (3.38)

for µ > µ2(ε) and as before P2(x2(µ),µ) > P2(x̃2(µ),µ) for µ0 < µ <

2λρ0(−ε) in the region where it applies.

(a) The simplest case to consider is when ε>x0. In this case for µ<
µ1(ε) only (3.19) has a solution x1(µ), for µ1(ε)<µ<µ2(ε) only (3.21)
is satisfied i.e. x= ε and for µ>µ2(ε) only (3.20) has a solution x2(µ).
Thus the states are ω(1)β , ω(3)β and ω(2)β as µ increases. This means that as
we increase µ the system goes from no BEC, to BEC for the σ =− bo-
sons only, to BEC for both species and superradiance.

(b) When ε < x0 we have to consider two cases, µ1(ε) <µ0 <µ2(ε)

and µ0<µ1(ε).
In the first case we can use the same arguments as for ε=0 to show that
P3(µ0)>P2(x2(µ0),µ0) and P3(µ2(ε))<P2(x2(µ2(ε)),µ2(ε)). This implies
that there exists µc(ε) between µ0 and µ2(ε) such that P3(µc(ε)) =
P2(x2(µc(ε)),µc(ε)). Thus at µc(ε) the state changes from ω

(3)
β to ω

(2)
β .

This means that the situation is the same as for ε > x0 except that the
changes of state occur at µ1(ε) and at µc(ε).
For ε<x0 and µ0<µ1(ε) the same argument applies. However we did not
determine on which side of µ1(ε), the value of µc(ε) lies. Thus we know
that there is no BEC for µ<µ0 and there is BEC for both types of bo-
sons for µ>µc(ε), but we do not know if the intermediate phase with
BEC for only σ − bosons is present.

4. CONCLUSION: EQUILIBRIUM BEC SUPERRADIANCE

The above results may be summarized as follows:
There exist two critical chemical potentials µ(1)c (ε) and µ(2)c (ε), µ

(1)
c (ε)

�µ(2)c (ε), see Fig. 1.
For µ<µ(1)c (ε), the solution of the variational problem (2.36) is ω(1)β,µ.

For the state ω(1)β,µ,

α+ =α− =αb=0, (4.1)
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i.e. the two σ =± Bose gases behave like two mean field Bose gases with
no BEC and they do not interact with the external b-boson laser field, in
which there is no condensation either.

For µ>µ(2)c (ε), the solution of the variational problem is ω(2)β,µ. By
virtue of (3.13) for this state we have

0<α+ �α− and αb �=0, (4.2)

i.e. there is BEC for the two σ =± Bose gases and for the external boson
laser field (superradiance). Moreover, for ε>0 the condensation of the σ =
± bosons is enhanced by the presence of this laser field: one gets it even
for dimensions ν = 1,2, because ρ0(−ε) <∞ for ν � 1. We interpret this
quantum state as that of equilibrium BEC superradiance(6).

When µ
(1)
c (ε) < µ

(2)
c (ε), for µ(1)c (ε) < µ<µ

(2)
c (ε), the solution of the

variational problem is ω(3)β,µ. For this state we have

α− �=0 and α+ =αb=0, (4.3)

i.e. there is BEC only for the σ =− Bose gas.

(a) The simplest case to consider is when ε > x0. In this case
µ
(1)
c (ε)=µ1(ε) and µ(2)c (ε)=µ2(ε). Thus the states are ω(1)β , ω(3)β and ω(2)β

as µ increases. This means that as we increase µ we observe three stages:
the system goes from no BEC, to BEC for only the σ = − bosons, and
then to BEC for both σ =± boson species and for the laser field (super-
radiance).

(b) When 0<ε<x0 we have to consider two subcases: µ1(ε)<µ0<

µ2(ε) and µ0<µ1(ε), see Fig. 1.
In the first subcase µ1(ε)=µ(1)c (ε)<µ(2)c (ε)<µ2(ε). Otherwise the situa-
tion is as in (a).
For µ0 < µ1(ε), µ1(ε) < µ

(2)
c (ε) < µ2(ε) but we did not determine if

µ
(1)
c (ε) < µ

(2)
c (ε). Thus we do not know if the intermediate phase with

BEC for only σ =− bosons is present.

(c) If ε = 0, then µ
(1)
c (ε)= µ

(2)
c (ε) and the intermediate phase with

BEC for only σ =− bosons is not present.
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